Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: covidwho-2326027

ABSTRACT

BackgroundSARS-CoV-2 infection in Africa has been characterized by a less severe disease profile than what has been observed elsewhere, but the profile of SARS-CoV-2-specific adaptive immunity in these mainly asymptomatic patients has not, to our knowledge, been analyzed.MethodsWe collected blood samples from residents of rural Kenya (n = 80), who had not experienced any respiratory symptoms or had contact with individuals with COVID-19 and had not received COVID-19 vaccines. We analyzed spike-specific antibodies and T cells specific for SARS-CoV-2 structural (membrane, nucleocapsid, and spike) and accessory (ORF3a, ORF7, ORF8) proteins. Pre-pandemic blood samples collected in Nairobi (n = 13) and blood samples from mild-to-moderately symptomatic COVID-19 convalescent patients (n = 36) living in the urban environment of Singapore were also studied.ResultsAmong asymptomatic Africans, we detected anti-spike antibodies in 41.0% of the samples and T cell responses against 2 or more SARS-CoV-2 proteins in 82.5% of samples examined. Such a pattern was absent in the pre-pandemic samples. Furthermore, distinct from cellular immunity in European and Asian COVID-19 convalescents, we observed strong T cell immunogenicity against viral accessory proteins (ORF3a, ORF8) but not structural proteins, as well as a higher IL-10/IFN-γ cytokine ratio profile.ConclusionsThe high incidence of T cell responses against different SARS-CoV-2 proteins in seronegative participants suggests that serosurveys underestimate SARS-CoV-2 prevalence in settings where asymptomatic infections prevail. The functional and antigen-specific profile of SARS-CoV-2-specific T cells in African individuals suggests that environmental factors can play a role in the development of protective antiviral immunity.FundingUS Centers for Disease Control and Prevention, Division of Global Health Protection; the Singapore Ministry of Health's National Medical Research Council (COVID19RF3-0060, COVID19RF-001, COVID19RF-008, MOH-StaR17Nov-0001).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adult , Kenya/epidemiology , T-Lymphocytes , COVID-19/epidemiology , COVID-19 Vaccines , Prevalence , Antibodies, Viral
2.
Dig Liver Dis ; 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2231205

ABSTRACT

BACKGROUND AND AIMS: COVID-19 mRNA vaccines were approved to prevent severe forms of the disease, but their immunogenicity and safety in cirrhosis is poorly known. METHOD: In this prospective single-center study enrolling patients with cirrhosis undergoing COVID-19 vaccination (BNT162b2 and mRNA-1273), we assessed humoral and cellular responses vs healthy controls, the incidence of breakthrough infections and adverse events (AEs). Antibodies against spike- and nucleocapsid-protein (anti-S and anti-N) and Spike-specific T-cells responses were quantified at baseline, 21 days after the first and second doses and during follow-up. RESULTS: 182 cirrhotics (85% SARS-CoV-2-naïve) and 38 controls were enrolled. After 2 doses of vaccine, anti-S titres were significantly lower in cirrhotics vs controls [1,751 (0.4-25,000) U/mL vs 4,523 (259-25,000) U/mL, p=0.012] and in SARS-CoV-2-naïve vs previously infected cirrhotics [999 (0.4-17,329) U/mL vs 7,500 (12.5-25,000) U/mL, (p<0.001)]. T-cell responses in cirrhotics were similar to controls, although with different kinetics. In SARS-CoV-2-naïve cirrhotics, HCC, Child-Pugh B/C and BNT162b2 were independent predictors of low response. Neither unexpected nor severe AEs emerged. During follow-up, 2% turned SARS-CoV-2 positive, all asymptomatic. CONCLUSION: Humoral response to COVID-19 vaccines appeared suboptimal in patients with cirrhosis, particularly in SARS-CoV-2-naïve decompensated cirrhotics, although cellular response appeared preserved, and low breakthrough infections rate was registered.

3.
Cell Rep Med ; 3(11): 100793, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2061977

ABSTRACT

Unlike mRNA vaccines based only on the spike protein, inactivated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines should induce a diversified T cell response recognizing distinct structural proteins. Here, we perform a comparative analysis of SARS-CoV-2-specific T cells in healthy individuals following vaccination with inactivated SARS-CoV-2 or mRNA vaccines. Relative to spike mRNA vaccination, inactivated vaccines elicit a lower magnitude of spike-specific T cells, but the combination of membrane, nucleoprotein, and spike-specific T cell response is quantitatively comparable with the sole spike T cell response induced by mRNA vaccine, and they efficiently tolerate the mutations characterizing the Omicron lineage. However, this multi-protein-specific T cell response is not mediated by a coordinated CD4 and CD8 T cell expansion but by selective priming of CD4 T cells. These findings can help in understanding the role of CD4 and CD8 T cells in the efficacy of the different vaccines to control severe COVID-19 after Omicron infection.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , Viral Vaccines/genetics , RNA, Messenger/genetics , COVID-19/prevention & control
4.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: covidwho-2053516

ABSTRACT

BACKGROUNDPatients undergoing immune-modifying therapies demonstrate a reduced humoral response after COVID-19 vaccination, but we lack a proper evaluation of the effect of such therapies on vaccine-induced T cell responses.METHODSWe longitudinally characterized humoral and spike-specific T cell responses in patients with inflammatory bowel disease (IBD), who were on antimetabolite therapy (azathioprine or methotrexate), TNF inhibitors, and/or other biologic treatment (anti-integrin or anti-p40) for up to 6 months after completing 2-dose COVID-19 mRNA vaccination.RESULTSWe demonstrate that a spike-specific T cell response was not only induced in treated patients with IBD at levels similar to those of healthy individuals, but also sustained at higher magnitude for up to 6 months after vaccination, particularly in those treated with TNF inhibitor therapy. Furthermore, the spike-specific T cell response in these patients was mainly preserved against mutations present in SARS-CoV-2 B.1.1.529 (Omicron) and characterized by a Th1/IL-10 cytokine profile.CONCLUSIONDespite the humoral response defects, patients under immune-modifying therapies demonstrated a favorable profile of vaccine-induced T cell responses that might still provide a layer of COVID-19 protection.FUNDINGThis study was funded by the National Centre for Infectious Diseases (NCID) Catalyst Grant (FY2021ES) and the National Research Fund Competitive Research Programme (NRF-CRP25-2020-0003).


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Viral Vaccines , Antibodies, Viral , COVID-19 Vaccines , Humans , Inflammatory Bowel Diseases/therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Vaccination , Viral Vaccines/genetics
5.
J Exp Med ; 219(10)2022 10 03.
Article in English | MEDLINE | ID: covidwho-1991982

ABSTRACT

Rapid recognition of SARS-CoV-2-infected cells by resident T cells in the upper airway might provide an important layer of protection against COVID-19. Whether parenteral SARS-CoV-2 vaccination or infection induces nasal-resident T cells specific for distinct SARS-CoV-2 proteins is unknown. We isolated T cells from the nasal mucosa of COVID-19 vaccinees who either experienced SARS-CoV-2 infection after vaccination (n = 34) or not (n = 16) and analyzed their phenotype, SARS-CoV-2 specificity, function, and persistence. Nasal-resident SARS-CoV-2-specific CD8+ and CD4+ T cells were detected almost exclusively in vaccinees who experienced SARS-CoV-2 breakthrough infection. Importantly, the Spike-specific T cells primed by vaccination did not suppress the induction of T cells specific for other SARS-CoV-2 proteins. The nasal-resident T cell responses persisted for ≥140 d, with minimal sign of waning. These data highlight the importance of viral nasal challenge in the formation of SARS-CoV-2-specific antiviral immunity at the site of primary infection and further define the immunological features of SARS-CoV-2 hybrid immunity.


Subject(s)
COVID-19 , Antibodies, Viral , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL